Topology of functional networks predicts physical binding of proteins
نویسندگان
چکیده
MOTIVATION It has been recognized that the topology of molecular networks provides information about the certainty and nature of individual interactions. Thus, network motifs have been used for predicting missing links in biological networks and for removing false positives. However, various different measures can be inferred from the structure of a given network and their predictive power varies depending on the task at hand. RESULTS Herein, we present a systematic assessment of seven different network features extracted from the topology of functional genetic networks and we quantify their ability to classify interactions into different types of physical protein associations. Using machine learning, we combine features based on network topology with non-network features and compare their importance of the classification of interactions. We demonstrate the utility of network features based on human and budding yeast networks; we show that network features can distinguish different sub-types of physical protein associations and we apply the framework to fission yeast, which has a much sparser known physical interactome than the other two species. Our analysis shows that network features are at least as predictive for the tasks we tested as non-network features. However, feature importance varies between species owing to different topological characteristics of the networks. The application to fission yeast shows that small maps of physical interactomes can be extended based on functional networks, which are often more readily available. AVAILABILITY AND IMPLEMENTATION The R-code for computing the network features is available from www.cellularnetworks.org
منابع مشابه
A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملTAC: A Topology-Aware Chord-based Peer-to-Peer Network
Among structured Peer-to-Peer systems, Chord has a general popularity due to its salient features like simplicity, high scalability, small path length with respect to network size, and flexibility on node join and departure. However, Chord doesn’t take into account the topology of underlying physical network when a new node is being added to the system, thus resulting in high routing late...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 28 16 شماره
صفحات -
تاریخ انتشار 2012